Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 16(8): e0256141, 2021.
Article in English | MEDLINE | ID: covidwho-1362089

ABSTRACT

SARS-CoV-2 requires serine protease, transmembrane serine protease 2 (TMPRSS2), and cysteine proteases, cathepsins B, L (CTSB/L) for entry into host cells. These host proteases activate the spike protein and enable SARS-CoV-2 entry. We herein performed genomic-guided gene set enrichment analysis (GSEA) to identify upstream regulatory elements altering the expression of TMPRSS2 and CTSB/L. Further, medicinal compounds were identified based on their effects on gene expression signatures of the modulators of TMPRSS2 and CTSB/L genes. Using this strategy, estradiol and retinoic acid have been identified as putative SARS-CoV-2 alleviation agents. Next, we analyzed drug-gene and gene-gene interaction networks using 809 human targets of SARS-CoV-2 proteins. The network results indicate that estradiol interacts with 370 (45%) and retinoic acid interacts with 251 (31%) human proteins. Interestingly, a combination of estradiol and retinoic acid interacts with 461 (56%) of human proteins, indicating the therapeutic benefits of drug combination therapy. Finally, molecular docking analysis suggests that both the drugs bind to TMPRSS2 and CTSL with the nanomolar to low micromolar affinity. The results suggest that these drugs can simultaneously target both the entry pathways of SARS-CoV-2 and thus can be considered as a potential treatment option for COVID-19.


Subject(s)
Cathepsin B/genetics , Cathepsin L/genetics , Estradiol/pharmacology , Genomics/methods , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Tretinoin/pharmacology , Cathepsin B/chemistry , Cathepsin L/chemistry , Databases, Genetic , Gene Expression Regulation, Enzymologic/drug effects , Gene Regulatory Networks/drug effects , Host-Pathogen Interactions , Humans , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Protein Interaction Maps/drug effects , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Internalization/drug effects
2.
PLoS Comput Biol ; 16(12): e1008461, 2020 12.
Article in English | MEDLINE | ID: covidwho-992642

ABSTRACT

The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through 'repurposing' drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.


Subject(s)
Cathepsin B/chemistry , Cathepsin L/chemistry , SARS-CoV-2/physiology , Serine Endopeptidases/chemistry , Virus Internalization/drug effects , Animals , Chlorocebus aethiops , Drug Repositioning , Humans , Models, Theoretical , Protein Binding , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virion , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL